SIDE CHAIN MODIFIED STEROLS AS PROBES INTO INSECT MOLTING HORMONE METABOLISM. I:

SYNTHESIS OF MONOFLUOROPHYTOSTEROLS

Toni B. Kline and Glenn D. Prestwich* Department of Chemistry State University of New York Stony Brook, New York 11794

Summary: 25- and 26-monofluorophytosterols were synthesized from stigmasterol as potential arthropod-activated competitive inhibitors of side chain hydroxylations occurring in ecdysone biogenesis.

An attractive biosynthetic pathway for the design of arthropod-selective control agents is the conversion of dietary C_{28} and C_{29} sterols via cholesterol to the ecdysteroid molting hormones. This requires dealkylation at C-24, several oxidative steps in the sterol nucleus, and finally hydroxylation at C-20, 22, 25, and (in ovaries) 26 of the side chain.¹ We describe herein the synthesis of the monofluorophytosterols l_c-4 designed to interfere with hydroxylation at C-25 and C-26.

The preparation of 26-fluorositosterol ($\frac{1}{2}$, 24 R) and 26-fluoroclionosterol ($\frac{2}{2}$, 24 S) from stigmasterol ($\frac{5}{2}$) is shown in Scheme 1. Protection of the A/B ring as the iso-methyl

^{*}Fellow of the Alfred P. Sloan Foundation (1981-1983) and Camille and Henry Dreyfus Teacher-Scholar (1981-1986). Address correspondence to this author.

ether 6 was followed by ozonolysis to aldehyde χ . Addition of the magnesium acetylide of 1-butyne gave a 1:1 mixture of propargylic alcohols 8a and 8b which were separated by flash chromatography (20% EtOAc-hexane). Each 8 was carried further as follows: Partial hydrogenation (H₂, Lindlar, EtOAc) of 8 and Claisen orthoester rearrangement of the resultant allylic alcohols χ (CH₃CH₂C(OEt)₃, catalytic 2,4,6-trimethylbenzoic acid, xylene, 140°C) followed by hydrogenation of the resultant Δ^{22} esters (Pt, H₂, EtOAc) gave the C-26 esters 10 as an epimeric mixture at C-25. Reduction (LiAlH₄ in refluxing THF) of 10 followed by fluor-ination^{4,5} (diethylaminodimethylaminosulfurdifluoride, CH₂Cl₂, -78°C) gave the 26-fluoro compounds 1 χ in 42% yield (from 8). Regeneration of the steroid A/B ring was effected with pTsOH in 50% aqueous dioxane to give χ and χ :⁷ ¹H NMR of 1: δ 5.4 (br d, 4 Hz, H-7), 4.3 (ddd, 48,8, 4 Hz, H-26), 3.5 (m, H-3), 2.0-0.5 (steroid envelope). ¹³C (C₆D₆): δ 141.3 (C-3), 126.7 (C-6), 86.7 (d, J_{C-F} = 170 Hz, C-26, 71.6 (C-3). EI-MS (70eV): m/z 432 (5.6%, M⁺), 414 (M⁺-HF), 107 (100% C₈H⁺₁₁). HRMS: C₂₉H₄₉ OF requires 432.3768, found (χ) 432.3795, (χ) 432.3740. [α]_D(χ) = -32.8° (5.03%, CHCl₃).

Scheme 2

Clerosterol⁸ (13) was elaborated to 25-fluoroclionosterol (4) according to Scheme II. Following A/B ring protection, two routes to the tertiary alcohol 16 were explored in anticipation of future biological tracer experiments: ozonolysis to 14 followed by Grignard reaction (10 equivalents of MeMgBr, THF, 4 h reflux) would permit introduction of ¹⁴C; epoxidation (2 equivalents MCPBA/solid NaHCO₃/CH₂Cl₂, rt 3h) to 15 followed by hydride reduction (LiAlH₄ in refluxing Et₂O, 2h) would facilitate deuterium or tritium labelling. Overall yields from clerosterol <u>iso</u>-methylether to alcohol 16 were <u>ca</u> 50% for either pathway. ⁹ Fluorination with diethylaminosulfur trifluoride⁴ (DAST, CH₂Cl₂, -78°C, 10 min, warm to rt) proceeds well on tertiary alcohols, and A/B ring deprotection completes the sequence to 4 in 65% yield from 16. ¹H NMR: δ 5.25 (br s, H-6), 3.4 (m,H-3), 1.2 (d, 22 Hz, H-26,27). ¹³C NMR (C₆D₆): δ 141.2 (C-5), 121.5 (C-6), 97.19 (d, 170 Hz, C-25), 71.6 (C-3). EI-MS (70 eV): <u>m/z</u> 432 (4.2%, M⁺), 412 (10%), M⁺-HF), 55 (100%). HRMS: C₂₀H₄₀ OF requires 432.3768, found 432.3745.

<u>Acknowledgments</u>. We thank the NIH for financial support (Grant AI-17031-01 TMP to G.D.P.) and Upjohn for a generous gift of stigmasterol.

References and Notes

- H.H. Rees, T.G. Davis, L.N. Dinan, W.J.S. Lockley, and T.W. Goodwin, In "Progress in Ecdysone Research". J. Hoffmann, ed. Elsevier North Holland Biomedical Press. Amsterdam, 1980.
- 2. J. Wiersig, N. Waespe-Sarcevic, and C. Djerassi, J. Org. Chem. 44, 3374 (1979).
- 3. All 80 MHz ¹H NMR and 20 MHz ¹³C NMR were obtained on a Varian CFT-20, using CDCl₃ as solvent and reference unless otherwise indicated. Values are reported in ppm downfield from & (TMS) = 0. IR spectra were recorded on a Perkin-Elmer 727 Spectrophotometer as neat oils on NaCl plates. Low resolution mass spectra were obtained on a Hewlett Packard Model 5908A interfaced to an HP5710A gas chromatograph. HRMS were obtained on a MS-30 instrument using a DS-50 data system. Diagnostic spectral data are reported here.
- W. Middleton, J. Org. Chem. 45, 574 (1975). C. Poulter, P. Wiggins and T. Plummer, J. Org. Chem. 46, 1532 (1981).
- Attempted fluorinations with KF/18-crown-6/DMF, fluoroalkylamine reagent, diethylaminosulfurtrifluoride, HF-pyridine/triphenylphosphine/DEAD, or by displacement of the mesylate of 11 met with failure.
- 6. $\frac{1}{14}$: ¹H NMR: § 3.4 (dd, 2,6 Hz, H-26). ¹³C § 66°3 (C-26)° IR: 3350 cm⁻¹. HRMS: $C_{30}H_{52}O_2$ requires 444.3967, found 444.3961. $\frac{1}{12}$: ¹H NMR: § 4.3 (ddd, 48, 8,6 Hz, H-26). ¹³C NMR (C₆D₆): § 95.6 (d, 170 Hz, C-26). EI-MS: <u>m/z</u> 446 (0.3%, M⁺), 414 (M⁺-MeOH), 145 (100%, C₆H₁₈F⁺)°
- 7. Crystals of each compound were obtained from ethanol: 1,mpl21-124°C; 2,mpl20-123°C; 4,123-125°C. Diastereomeric mixtures at C-25 for 1 and 2 were not resolvable by gas chromatography (1% SP-2100, 3% SP-2401, 25m 0V-101), although the Claisen conditions employed would be expected ² to produce roughly equal amounts of C-25 epimers.
- Clerosterol was purified by flash chromatography (10% EtOAc-hexane on silica gel) from the non-saponifiable lipids of <u>Codium fragile</u> collected on Long Island. Isolation and characterization: I. Rubenstein and L.J. Goad, <u>Phytochem.</u> 13, 481, 1974.
- 9. L4: ¹H NMR: δ2.6 (m, H-24), 2.1 (s, H-26). ¹³C NMR: δ176.3 (C=0), 48.1 (C-26). HRMS: C₂₉H₄₈O₂ requires 428.3654, found 428.3643. L5: ¹H NMR: δ2.4 (s, H-26). L6: ¹H NMR: δ1.1 (s, H 26,27). IR: 3400 cm⁻¹ (OH). HRMS: C₃₀H₅₂O₂ requires 432.3967, found 432.3997.
- 10. Alcohol lla proved refractory to dehydration with POC13/pyridine, SOC12/pyridine, reaction with phenylselenylcyanate/n-butylphosphine/pyridine, dimethylformamide dimethylacetal, conversion to a mesylate or chloride and attempted elimination. Pyrolysis (in vacuo, sealed tube, T >260°C) of an intermediate xanthate gave terminal olefin 22 in low and variable yield.
- 11. 18: ¹H NMR: δ8.4 (d, 1 Hz, CHO), 2.4 (m, H-24), 1.0 (d, 8 Hz, H-26). IR: 1715 cm⁻¹ (CHO). HRMS: C₃₀H₅₀O₂ requires 442.3811, found 442.3856.
- 12. Van Rheenen, V. <u>Tetrahedron Lett</u>. 985 (1969). 19: ¹H NMR: 2.4 (m, H-24), 2.1 (s, H-26). IR: 1705 cm⁻¹ (C=0). HRMS: C₂₉H₄₈O₂ requires 428.3654, found 428.3606.
- 13. 20: HRMS: C₃₀H₅₂O₂ requires 444.3967, found 444.3997. 21: ¹H NMR: 61.3 (d, 22 Hz, H-26,27). EI-MS: <u>m/z</u> 426 (3.6%, M⁺), 394 (10%, M⁺-HF and -MeOH). C₃₀H₅₁OF requires 446.3924, found 446.3936. 2: ¹H NMR: 65.3 (br d, 3 Hz, H-6), 3.4 (m, H-3), 1.3 (d, 22 Hz, H-26,27). EI-MS: <u>m/z</u> 412 (17%, M⁺-HF). HRMS: C₂₉H₄₈OF requires 432.3768, found 432.3745.

(Received in USA 15 March 1982)